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The purpose of this report is to identify congestion curves for access to the BWI airport.  The 
methodology is not unique to this facility, but the data and conclusions are.  This report builds 
upon the results in “BWI Terminal Accessibility Study” which can be obtained from the National 
Transportation Center at Morgan State University.  Rather than replicate this study, many 
sections of this report reference the data and results in that report.  Particularly, the methods of 
data collection and summary statistics concerning the data are not included in this report. 
 
One of the key goals of this project is to determine if it is possible to build congestion curves that 
are useful in analyzing facility access.  This is a new field that requires much exploration since 
there are no current means of building congestion curves for this type of data.  Much of the 
report is focused on building the results from the most basic form up toward a usable model that 
allows congestion curves to be built.  While full complexity is not reached in this report, a great 
improvement in the ability to forecast congestion is achieved. 
 
This report is organized into seven sections.  Section I contains some basic background on 
congestion and the theory that underlies the estimations and results presented in this report.  
Section II contains results for the simple density function estimations for all lots.  Section III 
contains results for complex density function estimations for all lots. Section IV contains results 
for the congestion analysis at the facility level.  Section V contains results for the congestion 
analysis by time of day and day of week.  Section VI contains the results for the congestion 
analysis by variable.  Section VII contains some concluding remarks.  A data appendix contains 
some more complex equations and data descriptions. 
 
Because all of the lots are handled in nearly identical fashion, the estimation methodology and 
other material that is constant for all lots are presented in Section I.  The tables and figures are 
presented in the text of this report for ease of reference.  At the end of each section a brief 
summary of the results of that section are presented.  For those not interested in the details of the 
methodology, data and analysis this summary should suffice to highlight the results of the 
congestion analysis. 
 

I. Background and Theory for Congestion and Estimations 
 
 The two principal components of this study are the idea of congestion and the concept of 
density functions and distributions.  This paper uses the latter to identify and quantify the former.  
This section begins with a description of congestion, and then moves on to identify the properties 
of density functions and how they can be used to quantify congestion.  Finally, estimation 
procedures and methodology are presented in this section. 
 

I.A.  Congestion 
 
For most people, congestion is something that happens to roads when too many other people are 
trying to go to the same place.  This is a correct definition of congestion, but not complete.  
Formally, congestion is the result of increasing marginal costs to all users, as more users attempt 
to use a shared resource.  Less formally, this means that as more and more people use a particular 
resource, these potential users “get in the way” of each other.  In fact, each person adds more to 
the congestion than the last person.  Eventually, if enough people try to use a resource 
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simultaneously, the costs rise to infinity.  In the case of congestion on roads (or at parking 
facilities), rising costs are the time that it takes users to complete the activity. 
 
This increasing cost of using the facility as more users attempt to use the same resource is a 
common occurrence in our modern society.  We wait at traffic signals, we wait to checkout at 
grocery stores, we queue to enter a freeway, we sit in slowed or stopped traffic during rush hour, 
and we wait to enter sporting or theatrical events.  And, we are slowed when entering the airport 
to catch a flight.  For the most part, we don’t even notice small amounts of congestion delay for 
most activities.  However, even if congestion delays are minimal, they can be measured and 
identified.  This is extremely important in instances when the delays may grow over time (as 
usage of a fixed shared resource increases) and mitigation is possible. 
 
The goal of this study is to measure congestion for accessing a parking facility (particularly at an 
airport where high volume is maintained over long periods of time) and determine the root cause 
of congestion.  While it seems trivial to identify the cause of congestion (too many people trying 
to use the same facility), this is not the case.  A simple example is a single lot at the airport.  
There are several factors that may contribute to the length of time it takes to complete the 
activity at the facility (parking and then accessing the airport).  The primary cause of elevated 
access times could be any combination of three (to keep things simple) variables.  The most 
obvious variable is the number of vehicles entering the facility during a certain time period.  
However, there are two other variables that may matter just as much or more: 1) the overall 
activity at the airport at this time (people doing things other than using the parking facility may 
impede those using the facility), and 2) the excess capacity of the facility at that time (in this case 
the number of empty parking spaces).  The results below will show that these variables are 
important in determining the total access time.  In fact, they are sometimes more important than 
the volume of usage in determining access times. 
 

I.B.  Probability Functions 
 
In this study, probability functions (also called density functions) are used to estimate congestion 
levels.  A brief description of density functions, and the reason they are employed, is presented. 
 
It is obvious that not every person that uses a facility uses it in exactly the same amount of time.  
While this is true in almost every circumstance – it may be exaggerated in a parking facility 
where there is a random element to exactly when the vehicles arrive and where the empty 
parking spaces are among other variables.  Therefore, there is not an access time but, rather, a 
distribution of access times.  For some purposes, the average access time might be the 
appropriate measure of congestion.  However, this is not true in general.  For this reason, the 
distribution of access times is estimated. 
 
This allows the use of whatever access benchmark is appropriate.  For example, an airport 
planner might well be interested in the average access time and then normal regression type 
estimations would be sufficient.  But, another planner might be interested in the 90th percentile 
access time and yet another might be interested in the 99th percentile access time.  With normal 
estimation procedures, these figures are difficult to obtain and require a separate estimation for 
each.  By estimating the density function, every benchmark is immediately available from the 
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same results.  This is of particular importance when the distribution is “spread” due to 
congestion. 
 
It is intuitively obvious that as more people try to use the parking facility, it will take longer to 
use the facility.  For most uses it would be sufficient to state that the average access time rises.  
It is most likely true that all benchmark times will rise as well (it is very likely that the 90th 
percentile access time will rise when the average access time rises).  However, it is possible that 
the higher percentile access times rise by more than the average access time.  This means that 
normal estimation procedures might underestimate the increase in congestion because they 
usually report means (or equivalent measures). 
 
It seems likely that the variance of access times increases as congestion increases.  Most 
distributions, and the data in this study, follow this pattern.  This implies that high percentile 
access times will increase by more than the mean increases during congested periods.  The 
estimation of density functions allows this phenomenon to be captured.  As an example, perhaps 
the average access time increases by 4 minutes during peak usage.  It is possible that some other 
benchmark, such as the 90th percentile access time, will increase by 7 minutes.  In order to 
capture this impact of congestion, density functions are estimated directly rather than standard 
procedures, which only estimate a benchmark.1 
 

I.C.  Density Function Representation 
 
There is no theory that dictates the distribution of the data concerning facility access time.  
Therefore, multiple density functions are estimated and presented.  The density functions 
employed in this study are the Poisson, Normal, and Chi-Squared density functions.  The Poisson 
is a discrete distribution that is often used for arrival data.  The Normal is a central distribution 
that often describes the distribution of random variables.  The Chi-Squared is a non-central 
distribution that appears to describe the data well in simple forms. 
 
The appendix contains the exact forms of these distributions.  Of importance for estimation is 
that the Poisson and the Chi-Squared are single parameter distributions and the Normal is a two-
parameter distribution.  In both the Poisson and the Chi-Squared distribution, the variance 
automatically increases as the mean increases.  In the Normal distribution, it is possible to move 
the mean and variance independently. 
 
The first step in the process of identifying the distribution of the data is to estimate a simple 
representation of each distribution for the access times for each lot.  This is done by maximizing 
the likelihood that the observed data comes from a distribution of one particular type and finding 
the corresponding coefficient(s).  After this is done, a complex estimation is performed for each 
distribution.  This entails allowing each parameter of the distribution to be a function of the 
variables that might influence congestion. 
 

                                                 
1 The best example of this lack of sophistication in standard estimations is for a regression.  A complex regression 
(even one of non-linear form) merely estimates average values.  There is no regression technique that allows for 
estimation of the increases variance and thus the spread in the distribution as congestion increases. 
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The included variables are the percentage of parking spaces filled in the lot, the number of 
vehicles entering the facility during the hour, the number of vehicles leaving the facility during 
the hour, and a series of departing capacity variables.  The departing capacity variables are the 
number of available seats on flights departing the airport in the next 30, 60, 90, 120 and 180 
minutes.  Various combinations of these departing capacity variables are employed to capture the 
impact of this variable. 
 
The amount of time it takes to access the airport from any facility is thus made to be a function 
of the airside activity of the airport (capacity), the excess capacity in the facility (percentage of 
spaces filled), and the amount of traffic in the facility (number of vehicles entering and leaving 
the facility).  In some estimations second order and cross-terms are employed as well. 
 
Because the estimations are of the density functions rather than the access times, all of the 
included variables potentially affect the spread of the distribution as well as the level of the 
distribution.  In other words, it is possible that a variable not only raises the amount of time it 
takes to access the airport but it might also affect the variance of the distribution.  This allows a 
much more flexible determination of the various percentile access times that might be of interest. 
 
The estimations are carried out using maximum likelihood techniques in GAUSS.  The non-
parametric distributions are then built from the data and the density functions estimated.  These 
are graphed and various points in the distribution are examined as potential benchmarks for 
congestion.  In addition, the impact of the different variables are studied and compared to 
determine which have the highest correlation with congestion.  For each of the access facilities 
the same analysis is carried out.  The results are presented in the individual facility sections.  A 
data appendix contains the forms of each of the estimations. 
 
II. Simple Density Function Estimations 
 

The simple density functions assume that all data for a facility can be described as coming 
from the same distribution.  This is an assumption that is obviously simplistic.  Even a casual 
observer could determine that the distribution of access times looks different during peak hours 
than off-peak hours.  However, this gives us a base case to work from and allows demonstration 
of the methodology with a small number of parameters.  It also provides insight into the basic 
“shape” of the distributions. 

 
There are three estimations that are carried out.  They are represented here 
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where at represents the access time, f the density function, p indexes the Poisson distribution, χ2 

indexes the Chi-Squared distribution, n indexes the normal distribution, λ is the parameter of the 
Poisson distribution, n is the parameter of the Chi-Squared distribution, and μ and σ are the 
parameters of the Normal distribution.  The parameters λ, n, and μ represent the means of their 
respective distributions. 
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These estimations are carried out for each lot.  The resulting parameters and a graphical 
representation of the distributions are presented for each lot below. 
 

II.A.  ESP Facility 
 
The ESP lot at BWI has the lowest volume of any of the facilities studied.  There were 
approximately 220 observations for this lot compared with 1400 for the smallest lot other than 
ESP.  This means that the results for the ESP lot have a very high standard error and the results 
are the least robust of those presented.  The simple density functions were estimated and the 
results are presented in Table 1 and Figure 1. 
 

Table 1 – Simple Density Function Parameters for the ESP Lot 
Poisson Distribution Chi-Squared Distribution Normal Distribution 

μ 9.6698 λ 9.6698 n 10.0582 σ 3.3822 
 
Note that the Poisson and the Normal distributions identify the mean as 9.6698 which is the 
actual mean while the Chi-Squared identifies the mean as slightly higher.  This does not 
necessarily mean that the Chi-Squared is incorrect.  The estimated density functions are found to 
maximize the fit to all observations.  When there are outlying observations, they can influence 
the mean slightly. 
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Figure 1 

 
The distribution of the actual data is presented as the dashed red line.  Note that all of the 
distributions seem to be centered roughly near the peak with the exception of the Chi-Squared, 
which is slightly shifted to the left of the peak.  The Chi-Squared, however, picks up the few 
outlier observations with access times in the area of 26 minutes that the other distributions fail to 
predict.  Visual inspection might lead one to select the Poisson as the distribution that best fits 
these data.  While this could be misleading, there are no nested tests of this type that are valid on 
these data.  More complex estimations are carried out using the other variables. 
 

II.B  Garage Facility 
 
The estimation of the parameters for the garage lot are presented in Table 2 and the distributions 
are graphically displayed in Figure 2. 
 

Table 2 – Simple Density Function Parameter Estimates for Garage Lot 
Poisson Distribution Chi-Squared Distribution Normal Distribution 

μ 7.9479 λ 7.9479   n 8.1604 σ 3.7560 
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Again we see that the Poisson and the Normal distributions identify the mean as 7.9479 which is 
the actual mean while the Chi-Squared identifies the mean as slightly higher.   

 
Figure 2 

 
The data here are not easily described by any of the distributions.  The Normal distribution is 
shifted right of the data and not peaked enough.  The Poisson is peaked enough but is shifted 
right at the peak and left in the high access time tail.  The Chi-Squared is not peaked enough (but 
peaks at the right value) but does fit the far right tail well.  Visually one could choose either the 
Poisson or the Chi-Squared as the distribution that fits the data best. 
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II.C  Satellite Facility 
 

Blue Lot 
 

Table 3 – Simple Density Function Parameter Estimates for Blue Lot 
Poisson Distribution Chi-Squared Distribution Normal Distribution 

μ 19.2051 λ 19.2051 n 19.1376 σ 6.4058 
 
Again we note that the Poisson and the Normal distribution find the mean precisely and in this 
case the Chi-Squared slightly understates the mean. 
 
Green Lot 
 

Table 4 – Simple Density Function Parameter Estimates for Green Lot 
Poisson Distribution Chi-Squared Distribution Normal Distribution 

μ 21.9085 λ 21.9085 n 21.8858 σ 6.5766 
 
We see that all three distributions report means very close to the actual mean of the data in this 
case.  The Chi-Squared slightly understates the mean. 
 
Amtrak Lot 
 

Table 5 – Simple Density Function Parameter Estimates for Amtrak Lot 
Poisson Distribution Chi-Squared Distribution Normal Distribution 

μ 18.3810 λ 18.3810 n 18.2601 σ 6.5555 
 
All three distributions closely represent the mean of the data.  The Chi-Squared again understates 
the mean slightly. 
 
Satellite Lot 
 

Table 6 – Simple Density Function Parameter Estimates for Combined Satellite Lots 
Poisson Distribution Chi-Squared Distribution Normal Distribution 

μ 20.5213 λ 20.5213 n 20.4238 σ 6.6404   
 
While the Chi-Squared distribution slightly understates the mean, the other two exactly predict 
the mean once again.   
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Figure 3 
 
All three distributions actually fit the data from the Blue Satellite lot reasonably well.  The 
Normal distribution is slightly right-shifted and the Poisson is slightly too peaked.  The Chi-
Squared fits the data extremely well.  It may be slightly less peaked than the actual data, but it 
fits both sides of the distribution well and predicts the peak as well as either of the other 
distributions. 
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Figure 4 
 
As with the Blue lot data, all three distributions fit the data well.  The Normal and Poisson 
distributions are slightly right-shifted at the peak but are still good representations of the data.  
The Chi-Squared fits both sides of the distribution well and predicts the peak relatively well.  It 
is centered on the peak but just a bit less peaked than the data. 
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Figure 5 
 
The Amtrak lot had very few observations.  With the exception of the peak in the observed data 
at 13 minutes, all three distributions do a good job of predicting the data.  The Poisson is slightly 
too peaked but the other two distributions fit quite well.  Visually the Chi-Squared fits better at 
the peak and to the right of the peak and the Normal distribution fits better to the left of the peak. 
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Figure 6 
 
Not surprisingly, the graph of the distributions for all of the Satellite lots looks similar to the 
individual lot graphs.  The Poisson distribution is a bit too peaked and slightly right-shifted at the 
peak.  The Normal distribution fits the data well, but is right-shifted at the peak.  The Chi-
Squared distribution fits the data quite well except for the height of the peak, which is slightly 
under-predicted by this distribution.  Visually, the Chi-Squared Distribution is the best fit for the 
Satellite lot data both in aggregate and on an individual lot basis. 

 
II.D  Drop-Off Passengers 

 
The drop-off passenger data are the most variant and susceptible to congestion of all the 
facilities.  As such, they are the most difficult to estimate and, at the same time, the most 
interesting to describe. 
 

Table 7 – Simple Density Function Parameter Estimates for Drop-Off Passengers 
Poisson Distribution Chi-Squared Distribution Normal Distribution 

μ 95.4486 λ 95.448614 n 81.1930 σ 68.9542 
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Again, the Poisson and Normal distributions identify the mean exactly while the Chi-squared 
distribution identifies a mean less than the actual mean.  This is different than the other cases 
where the means were quite close. 
 
Because the drop-off data are obtained in seconds instead of minutes, some aggregation is 
necessary in order to graph the results meaningfully.  The data are combined in 10-second 
increments before being graphed.  All analysis is carried out with the actual data until the 
graphing is done. 
 

 
Figure 7 

 
The increased variance and the spread of the distributions are both very evident in the graph.  
Note that all distributions are peaked to the right of the data.  This is due to the fact that the 
observed data are peaked far to the left of the mean with a very large right-side tail (from 
congested periods it would appear).  The Poisson distribution matches the data the best in this 
simple representation.  The attempt of the distributions to capture the extremely large right-hand 
side tail is evident in the graphs of the density functions.  The complex density function 
estimations below mitigate this problem. 
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II.E  Simple Density Function Analysis 
 
It is apparent that the data, with the exception of the drop-off passenger data, are relatively well 
represented by the distributions.  However, in order to meaningfully predict congestion, the best 
possible representation is desired.  In particular, the right hand tails of the data need to be 
described well before it is possible to look at congestion.  This is true because congestion implies 
that we are studying times when accessibility is hampered and this is the right hand tail of the 
distributions.  In the following section, estimations with expanded variable lists and 
correspondingly better predictive powers are presented.  Congestion results are viewed after the 
full presentation of the estimations 
 
While it is not clear what it means to be a good fit at this point, the Chi-Squared distribution 
seems to be the best fit to the data overall.  This is because the Chi-Squared distribution has a 
large right tail in its natural form.  When complex density functions are utilized, all distributions 
will be able to lengthen their tails and this relationship may no longer hold. 
 
The main reason for expanding the explanatory variable set is that there is a need for a large 
number of observations to estimate density functions.  In some cases, difficulty in estimation is 
still obtained with several hundred observations.  While it might not be possible to obtain several 
hundred observations for each set of conditions, it is feasible to obtain a few thousand 
observations overall and fully describe the data with complex density functions.  This will allow 
analysis of each set of conditions without needing a full dataset for each of them.  Thus, 
congestion analysis can be carried out for multiple conditions with complex density functions on 
a few thousand observations rather than hundreds, if not thousands, of extra observations for 
each period and separate estimations for each set of conditions.  The success of this will be 
detailed below. 
 
III. Complex Density Function Estimations 
 
Three sets of complex density functions were attempted for each lot and distribution.  Within 
each set of density functions, various sets of variables were tried as the independent variables in 
the estimation.  Unfortunately, density function analysis is subject to a much greater degree of 
sensitivity than most standard estimation methodologies.  Due to this, a large number of the 
attempted estimations did not work properly.  This was due to multicolinearity problems. 
 
The first set of complex density functions are estimated using a small set of right-hand side 
variables.  This set of variables has no second-order or cross-terms and thus introduces first-
order affects of variables on access time.  However without the changes in slope allowed with 
second-order terms, the curvature of the access time graphs (congestion) cannot be captured. 
 
The second set of complex density functions are estimated using the same small set of right-hand 
side variables but including second-order terms to allow access times to have non-linear 
properties.  This allows discovery of true congestion points. 
 
The last set of complex density functions includes all of the variables in the second estimation 
plus a large set of variables for days of week and times of day that allow even more precise 
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estimation.  However, the colinearity problems arise and these estimations are very difficult to 
perform.  In fact, these become almost impossible to analyze for a broad range of data and 
density functions.  This is not surprising given the sensitivity of density function estimation. 
 
The forms of each of the estimations remain the same as in the simple density function analysis 
with the exception that the density function parameters are more complex.  The forms are given 
here and the results for each lot and distribution are given below. 
 
Poisson Distribution 
 
The estimation of the Poisson Distribution has the following form 

( )
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+++++=
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where α is a constant in the equation for the parameter of the distribution, β are the slope 
coefficients for the variables that might impact the parameter of the distribution, e represents the 
number of cars entering the facility during the hour, x represents the number of cars exiting the 
facility during the hour, f represents the percentage of parking spaces filled in the facility, c 
represents a vector of airside capacity variables, t represents of vector of dummy variables for 
day of week and time of day.2  These last variables are only included in the full estimation. 
 
Chi-Squared Distribution 
 
The estimation of the Chi-Squared Distribution ahs the following form 
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where all symbols are the same except that n is the parameter of the distribution. 
 
Normal Distribution 
 
The estimation of the Normal Distribution has the following form 
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where all symbols are the same as in the last two distributions except that μ and σ as subscripts 
index parameters that impact that parameter in the distribution. 
 

                                                 
2 The capacity variables included are the departing capacity in the next 30, 60, 90, 120, and 180 minutes.  Some 
estimations are carried out with combinations of these capacity variables. Results are reported for the best-fit 
capacity variables rather than for all permutations tried.  In general, it was not important which were used since they 
are highly correlated and all seemed to be good predictors of the “busyness” of the airport.  Unless otherwise stated, 
the departing capacity over the next two hours (c120) will be used in the estimations. 
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III.A  ESP Facility 
 
The results for the first group of complex estimations for the ESP facility are presented in Table 
8. 
 

Table 8 - Estimates for the Basic Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  11.1713 1.5076 0 

eβ  -0.0053 0.0183 0.7731 
xβ  0.1217 0.1013 0.2294 
fβ  -0.0242 0.0256 0.3455 

120cβ  0.1458 1.0455 0.8891 
Chi-Squared Distribution 

α  10.342 8.0177 0.1971 
eβ  0.0097 0.0938 0.9173 
xβ  0.043 0.5798 0.9409 
fβ  -0.0225 0.1384 0.8707 

120cβ  -1.2918 5.1397 0.8015 
Normal Distribution 

σα  3.394635 -0.00373  
eσβ  -0.01475 -0.01113  
xσβ  -0.01694 0.002774  
fσβ  -0.0092 0.001806  

120cσβ  -0.00096 0.000901  
μα  11.30579 0.000046  
eμβ  -0.00378 0.003238  
xμβ  0.134264 -0.00103  
fμβ  -0.01768 0.000378  

120cμβ  0.293187 0.001015  
 

It can be seen that all of the distributions are right-shifted from the simple distributions from 
examining the means.  Each of the distributions has a base mean that is above the actual mean of 
the data.  This is evidence that the complex distributions are needed to better describe the data 
(since changes imply that the simple density estimates are not sufficient to describe the data). 
 
Because there are very few observations, the lack of significance in the coefficients is not very 
meaningful.  However, it can be noted that the variables have the same impact on the Poisson 
and Normal distribution means but not on the Chi-Squared.  Number of cars entering and 
percentage of spaces filled in the lot have negative impacts on the mean while the number of cars 
leaving and the departing capacity have positive impacts.  In the normal distribution, the 
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variables with positive impacts are highly significant while those with negative impacts are not 
significant.  This means that it is possible that these variables (those with negative impacts) are 
not estimated precisely with this small number of observations.  From these estimations, it 
appears that each of the variables lowers the variance of the distribution.   
 
Figure 8 depicts the new distributions against the observed data. 

 
Figure 8 

 
Note that the new distributions follow the same pattern as the simple distributions.  The Poisson 
remains the best fit for both left of the peak and at the peak.  The Chi-Squared is still the best 
distribution to the right of the peak.   Overall, the Chi-Squared is most likely the best distribution 
for these data but the Poisson is also quite good and the Normal performs well also. 
 



 18

The results for the estimations with second-order terms are presented in Table 9. 
 

Table 9 - Estimates for the Second Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard 
Error 

α  8.873644 0.000242 
eβ  -0.13645 -0.000007 
xβ  0.807423 -0.000003 
fβ  -0.717872 0.000006 

eeβ  0.002229 -0.000025 
exβ  -0.008896 0.000018 
efβ  0.006925 -0.000014 
xxβ  0.044922 0.000032 
xfβ  -0.014782 0.00007 
ffβ  -0.009444 0.000096 
120cβ  -0.007175 0.000194 

120120ccβ  -2.665009 -0.000076 
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The results for the estimations with all the variables are presented in Table 10.  Note that only 
certain estimations work in this case. 
 

Table 10 - Estimates for the Final Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  26.61 28.1424 0.3444 

tueβ  8.2094 7.084 0.2465 
wedβ  12.734 12.5074 0.3086 
thurβ  11.0776 15.6813 0.4799 

friβ  10.1993 15.7283 0.5167 
satβ  -16.2237 14.9869 0.279 
sunβ  10.1644 5.3766 0.0587 

amrushβ  -1.6394 1.3051 0.209 
lateamβ  -0.6266 3.061 0.8378 
middayβ  1.0837 1.778 0.5422 
earlypmβ  -9.9741 9.877 0.3126 
pmrushβ  0.0187 0.0107 0.0811 

eβ  -0.0131 0.1148 0.9093 
xβ  -0.003 0.0132 0.8232 
fβ  -0.193 0.1865 0.3009 

120cβ  -0.0981 0.2545 0.6999 
eeβ  0.0755 0.1027 0.4622 
exβ  -0.9293 0.7496 0.2151 
efβ  0.0126 0.0281 0.6526 
120ecβ  0.2143 0.2564 0.4032 
xxβ  2.128 4.9139 0.665 
xfβ  26.61 28.1424 0.3444 
120xcβ  8.2094 7.084 0.2465 
ffβ  12.734 12.5074 0.3086 
120fcβ  11.0776 15.6813 0.4799 

120120ccβ  10.1993 15.7283 0.5167 
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Figure 9 shows the various Poisson distributions against the observed data. 

 
Figure 9 

 
Note how each addition of right-hand side variables to the estimation improve the fit of the 
Poisson distribution to the upper tail of the distribution.  This means that congestion levels are 
better predicted with the larger number of right-hand side variables.  However, for this lot, the 
predictions of the peak values of the distribution are no better and in the last estimation are quite 
poor.  However, this more complex estimation is better analytically - despite the lack of visual 
evidence.   
 
Of importance are the relative changes in the distributions as the number of right-hand side 
variables is increased.  Notice that the basic complex density function is only slightly shifted 
from the simple density function.  The second complex density function shifts away from the 
first a bit more and the full complex density function shifts significantly.  This is important 
because it points out the non-linear relationships for the access time.  The variables added from 
the first to the second complex density function are the non-linear terms.  The variables added 
from the second to the third (full) complex density function are the dummy variables for time of 
day and day of week.  It is clear that these variables are important in describing the distribution. 
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Figure 10 shows the various Normal distributions against the observed data. 

 
Figure 10 

 
The ESP lot appears not to fit as well with the complex normal density function.  Analytically, 
the complex density function is a better fit. The lack of marked improvement is due to the small 
number of observations.  Also, because the two complex representations do not converge, the 
most significant improvements in the density function are not observed. 
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Figure 11 shows the various Chi-Squared distributions against the observed data. 

 
Figure 11 

 
The complex density function is a slightly better fit than the simple density function for the Chi-
Squared distribution and the ESP lot.  The lack of improvement is not surprising given the good 
fit from the simple density function and the low number of observations.  Also, as in the other 
distributions, the non-linear relationships add more to the description and those distributions do 
not converge for this distribution.  The lack of convergence of these distributions is discussed in 
more detail in the congestion analysis. 
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III.B Garage Facility 
 
The results for the first group of complex estimations for the Garage are presented in Table 11. 
 

Table 11 - Estimates for the Basic Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  7.9423 0.0477 0 

eβ  0.0005 0.0003 0.1192 
xβ  0 0.0002 0.9972 
fβ  0.01 0.0019 0 

120cβ  -0.1301 0.0284 0 
Chi-Squared Distribution 

α  7.4067 0.2636 0 
eβ  0.0002 0.0016 0.8909 
xβ  -0.0001 0.0013 0.9476 
fβ  0.012 0.0101 0.2368 

120cβ  -0.0199 0.153 0.8964 
Normal Distribution 

σα  3.7337 0.044 0 
eσβ  0.0006 0.0003 0.035 
xσβ  -0.0003 0.0002 0.1719 
fσβ  -0.0002 0.0017 0.9239 

120cσβ  -0.1629 0.0243 0 
μα  7.9425 0.0636 0 
eμβ  0.0004 0.0004 0.2848 
xμβ  0.0001 0.0003 0.8707 
fμβ  0.0101 0.0025 0 

120cμβ  -0.1284 0.0343 0.0002 
 
The estimates for this lot are barely changed from the simple estimations.  No variables have 
significant impacts on the access time or variance.  The most likely reason for this is that the 
variance in accessing the terminal from the garage is more individual based than congestion 
based.  More will be said of this in the congestion results section. 
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Figure 12 depicts the new distributions against the observed data. 

 
Figure 12 

 
Like the simple density function graph, the Poisson appears to be the best fit to the data through 
the peak and well past.  The Chi-Squared is the best fit far to the right of the peak.  All three are 
slightly better than the simple estimates but the Garage lot has the smallest improvement in fit 
from the first complex density estimations (over the simple estimations). 
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The results for the estimations with second-order terms are presented in Table 12. 
 

Table 12 - Estimates for the Second Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  8.0054 0.0656 0 

eβ  0.0006 0.0006 0.3574 
xβ  0.0004 0.0005 0.4455 
fβ  0.037 0.0042 0 

eeβ  0 0 0.0227 
exβ  0 0 0.0002 
efβ  -0.0002 0 0 
xxβ  0 0 0 
xfβ  0 0 0.1159 
ffβ  0 0.0001 0.8308 
120cβ  -0.1888 0.0648 0.0036 

120120ccβ  0.0157 0.0166 0.3452 
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The results for the estimations with all the variables are presented in Table 13.  Note that only 
certain estimations work in this case. 
 

Table 13 - Estimates for the Final Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  7.3113 0.4613 0 

tueβ  1.3025 0.2801 0 
wedβ  0.7616 0.4444 0.0866 
thurβ  0.8118 0.4568 0.0756 

friβ  0.2256 0.4574 0.6219 
satβ  -0.4722 0.4223 0.2636 
sunβ  -0.5122 0.298 0.0857 

amrushβ  0.055 0.2372 0.8166 
lateamβ  0.4741 0.2035 0.0198 
middayβ  0.5588 0.1716 0.0011 
earlypmβ  1.116 0.1735 0 
pmrushβ  0.9948 0.1593 0 

eβ  -0.0003 0.0008 0.6914 
xβ  0.001 0.0008 0.2125 
fβ  0.0105 0.0068 0.1215 

120cβ  -0.181 0.0978 0.0641 
eeβ  0 0 0.1809 
exβ  0 0 0.2128 
efβ  -0.0001 0 0.0104 
120ecβ  0.0003 0.0003 0.3017 
xxβ  0 0 0.1288 
xfβ  0 0 0.8186 
120xcβ  0.0001 0.0003 0.6674 
ffβ  -0.0003 0.0003 0.3325 
120fcβ  -0.0052 0.0044 0.2388 

120120ccβ  0.0039 0.03 0.8969 
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 Figure 13 shows the various Poisson distributions against the observed data. 

 
Figure 13 

 
The improvement in the fit of the distribution to the data from this lot is not very dramatic.  
There is an improvement in the fit both at the peak and at the right-side extremes in the 
distribution as variables are added.  However, the improvements are small and hard to see 
visually. 
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Figure 14 shows the various Normal distributions against the observed data. 

 
Figure 14 

 
As with the Poisson distribution, there is little improvement in the fit for this lot with the 
complex density function. 
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Figure 15 shows the various Chi-Squared distributions against the observed data. 

 
Figure 15 

 
There is a slight improvement in the fit of the Chi-Squared distribution from the complex density 
function.  The improvement in the fit of this distribution is enough that it is observable visually.  
The lack of convergence with the non-linear terms does not allow observation of how well this 
distribution might fit. 
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III.C  Satellite Facilities 
 
Blue Lot 
 
The results for the first group of complex estimations for the Blue lot satellite facility are 
presented in Table 14. 
 

Table 14 - Estimates for the Basic Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  21.5799 0.2932 0 

eβ  0.0077 0.0022 0.0005 
xβ  0.0526 0.0091 0 
fβ  0.0682 0.0081 0 

120cβ  0.3286 0.2616 0.209 
Chi-Squared Distribution 

α  20.5546 2.6364 0 
eβ  -0.0029 0.0181 0.8726 
xβ  0.0283 0.0828 0.733 
fβ  0.063 0.0656 0.3368 

120cβ  0.3556 2.2352 0.8736 
Normal Distribution 

σα  6.4125 0.2611 0 
eσβ  0.0128 0.002 0 
xσβ  0.0236 0.0078 0.0025 
fσβ  0.0152 0.0077 0.0483 

120cσβ  0.0016 0.1763 0.9929 
μα  21.5801 0.4094 0 
eμβ  0.0063 0.0031 0.0398 
xμβ  0.0532 0.0128 0 
fμβ  0.066 0.0109 0 

120cμβ  0.3276 0.349 0.3479 
 
The first result to note from this table is that all of the density functions shifted right to 
accommodate the data.  This makes all of the distributions fit the data much better than in the 
simple density function cases.  The impacts of the variables are almost uniformly positive.  With 
the exception of the number of cars entering, which has no impact for the Chi-squared 
distribution, all variables included increase the amount of time needed to access the terminal.  
This means that as more cars are entering the lot, it takes longer to access the terminal; as more 
cars are exiting the lot, it takes longer to access the terminal; as fewer parking spaces are 
available in the lot, it takes longer to access the terminal; and, as the airside departing capacity 
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increases, it takes longer to access the terminal.  These are all expected results.  Also of interest 
is the fact that in the Normal distribution, the only distribution where variance is measured 
separately, each of these variables also increases variance.  This will have a notable impact on 
the congestion curves. 
 
Figure 16 depicts the new distributions against the observed data. 

 
Figure 16 

 
Both the Poisson and Normal distributions fit the data much better than in the simple estimation 
case.  However, the Chi-Squared is still the best distribution for describing the data.  The 
addition of the right-hand side variables pulled the peak of the Poisson distribution closer to the 
peak of the actual data, but it still underestimates the far right portions of the data.  The Chi-
Squared peak has been drawn upward and fits the data better and very closely describes the data 
right of the peak. 
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The results for the estimations with second-order terms are presented in Table 15. 
 

Table 15 - Estimates for the Second Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  23.7438 0.5441 0 

eβ  -0.0302 0.0091 0.0009 
xβ  0.0769 0.0187 0 
fβ  0.1979 0.0276 0 

eeβ  0.0002 0 0 
exβ  -0.0007 0.0002 0.0002 
efβ  -0.0004 0.0002 0.1416 
xxβ  -0.0023 0.0004 0 
xfβ  0.0023 0.0008 0.0043 
ffβ  0.0018 0.0007 0.0077 
120cβ  0.4824 0.2971 0.1044 

120120ccβ  -0.5225 0.2017 0.0096 
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The results for the estimations with all the variables are presented in Table 16.  Note that only 
certain estimations work in this case. 
 

Table 16 - Estimates for the Final Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  20.1765 1.3677 0 

tueβ  1.0123 1.1511 0.3792 
wedβ  1.7951 1.7532 0.3059 
thurβ  0.5129 1.1469 0.6547 

friβ  -0.1691 1.1613 0.8842 
satβ  0.5997 1.8089 0.7403 
sunβ  1.8875 1.6487 0.2523 

amrushβ  2.1074 1.1023 0.0559 
lateamβ  2.5264 0.9225 0.0062 
middayβ  3.1538 0.8741 0.0003 
earlypmβ  4.9387 0.8553 0 
pmrushβ  4.3295 0.8426 0 

eβ  -0.0308 0.0144 0.032 
xβ  0.0959 0.0268 0.0003 
fβ  0.1813 0.0355 0 

120cβ  4.9183 1.1324 0 
eeβ  0.0002 0.0001 0.0315 
exβ  -0.0007 0.0003 0.0058 
efβ  -0.0002 0.0003 0.3675 
120ecβ  0.0128 0.0077 0.0982 
xxβ  -0.0011 0.0005 0.0154 
xfβ  0.0041 0.001 0.0001 
120xcβ  0.1624 0.0424 0.0001 
ffβ  0.0002 0.0013 0.8644 
120fcβ  0.0385 0.0197 0.0506 

120120ccβ  -0.4879 0.3312 0.1406 
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Figure 17 shows the various Poisson distributions against the observed data. 

 
Figure 17 

 
The Poisson distribution fits the data quite well once expanded to include all the variables.  The 
improvement in fit at both the peak and the higher access time portions of the distribution is 
quite obvious.  While this may not be the best distribution, there is no doubt that increasing the 
number of right-hand side variables greatly improves the fit of the distribution to the data.  As in 
the ESP lot, note that the most drastic improvement is with the addition of non-linear and 
time/day variables on the right-hand side.  Again, this shows that these terms are extremely 
important in congestion analysis. 
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Figure 18 shows the various Normal distributions against the observed data. 

 
Figure 18 

 
The complex normal fits the data better over the entire range of the distribution.  Visually, this 
can be seen by noting that (with the exception of a few very small areas) the red line always lies 
between the green and blue lines.  This means that the fit has been improved over the entire 
region.  Again, the lack of convergence for the more full representations prevents a further 
significant improvement in fit. 
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Figure 19 shows the various Chi-Squared distributions against the observed data. 

 
Figure 19 

 
The Chi-Squared distribution fits the data better when moved to a complex density function as 
well.  This is not as striking an improvement as in the Poisson or Normal distributions, but this is 
due to the fact that the simple density function already fit the data relatively well.  The 
improvement lies mostly at the peak of the data and to the right of this point.  While the Chi-
Squared distribution fits quite well, the lack of convergence with non-linear and time/day 
variables precludes finding an even better fit with this distribution. 
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Green Lot 
 
The results for the first group of complex estimations for the Green lot satellite facility are 
presented in Table 17. 
 

Table 17 - Estimates for the Basic Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  23.071 0.4406 0 

eβ  0.034 0.0172 0.048 
xβ  0.0034 0.0044 0.4496 
fβ  -0.0319 0.0143 0.026 

120cβ  -1.0395 0.2412 0 
Chi-Squared Distribution 

α  22.8584 3.8223 0 
eβ  0.063 0.1486 0.6716 
xβ  -0.0009 0.038 0.9819 
fβ  -0.02 0.121 0.8686 

120cβ  -1.3345 2.0131 0.5074 
Normal Distribution 

σα  6.5782 0.4384 0 
eσβ  -0.0051 0.0174 0.7688 
xσβ  0.0083 0.0051 0.1066 
fσβ  -0.0074 0.0151 0.6249 

120cσβ  -0.0011 0.2915 0.9971 
μα  23.0713 0.6145 0 
eμβ  0.0312 0.0242 0.1979 
xμβ  0.0043 0.0066 0.5159 
fμβ  -0.0342 0.0204 0.0941 

120cμβ  -1.0394 0.3406 0.0023 
 
The results for this lot are similar to those of the Blue above, with the exception that less precise 
estimates are obtained.  Some of the variables have negative impacts on for some distributions.  
More will be said concerning this below as more variables are added to the estimations. 
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Figure 20 depicts the new distributions against the observed data. 

 
Figure 20 

 
As in the graph for the Blue lot, the new distributions are improved from the simple density 
functions but the Chi-squared remains the best fit.  The Normal distribution appears to fit the 
data best in the region far to the left of the peak, but the Poisson and Chi-Squared are nearly as 
good in this region.  The Chi-Squared describes the peak of the distribution the best and is nearly 
perfect to the right of the peak.  It is clear that the Chi-Squared remains the best distribution to 
describe this data. 
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The results for the estimations with second-order terms are presented in Table 18. 
 

Table 18 - Estimates for the Second Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  19.6589 1.855 0 

eβ  -0.1998 0.0832 0.0164 
xβ  0.1355 0.0327 0 
fβ  -0.3129 0.0862 0.0003 

eeβ  -0.0029 0.0013 0.0278 
exβ  0.0038 0.0012 0.0025 
efβ  -0.0126 0.0034 0.0002 
xxβ  -0.0003 0.0002 0.0622 
xfβ  0.0017 0.0007 0.0152 
ffβ  -0.0002 0.0016 0.9025 
120cβ  -0.2668 0.322 0.4074 

120120ccβ  -0.4114 0.2517 0.1022 
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The results for the estimations with all the variables are presented in Table 19.  Note that only 
certain estimations work in this case. 
 

Table 19 - Estimates for the Second Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  8.6087 2.9626 0.0037 

tueβ  0.3691 0.4995 0.4599 
wedβ  3.889 1.4317 0.0066 
thurβ  10.0641 4.0632 0.0133 

friβ  7.2919 3.2855 0.0265 
satβ  0.7636 1.541 0.6202 
sunβ  -1.0949 0.9511 0.2497 

amrushβ  -2.1067 4.7166 0.6551 
lateamβ  -0.1332 4.9474 0.9785 
middayβ  2.1437 4.5604 0.6383 
earlypmβ  2.8582 4.3449 0.5107 
pmrushβ  3.4373 3.8655 0.3739 

eβ  -0.3186 0.128 0.0128 
xβ  0.2519 0.084 0.0027 
fβ  -0.3156 0.1368 0.0211 

120cβ  -0.9878 1.2196 0.418 
eeβ  -0.003 0.0016 0.0675 
exβ  0.0095 0.0034 0.0052 
efβ  -0.0267 0.0083 0.0013 
120ecβ  -0.0655 0.0383 0.0874 
xxβ  -0.0001 0.0003 0.7709 
xfβ  0.0013 0.0011 0.2067 
120xcβ  -0.0835 0.0436 0.0554 
ffβ  0.0075 0.0043 0.077 
120fcβ  -0.1835 0.0692 0.008 

120120ccβ  -0.4173 0.5514 0.4491 
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Figure 21 shows the various Poisson distributions against the observed data. 

 
Figure 21 

 
The Poisson distribution with all the right-hand side variables better describes the green lot data, 
but the difference is less dramatic than for the blue lot.  The distribution fits the data better with 
each successive addition of descriptive variables.  The fit never attains the level of precision of 
the Chi-Squared distribution however.  As with the other lots, the most significant improvement 
in the fit comes when both the non-linear and time/day variables are included in the estimation of 
the density function. 
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Figure 22 shows the various Normal distributions against the observed data. 

 
Figure 22 

 
The Normal distribution changes only slightly when more descriptive variables are added.  
Again, this new distribution is an analytical improvement over the simple density function that is 
not visually obvious.  It is possible that an even better fit could be obtained with the addition of 
non-linear and time/day variables. 
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Figure 23 shows the various Chi-Squared distributions against the observed data. 

 
Figure 23 

 
The Chi-Squared distribution has an improved fit with the added descriptive variables.  The 
changes in the distribution are visually obvious and, similar to the blue lot, primarily at and to 
the right of the peak of the data.  Again, this distribution fits the data quite well but even better 
representations might be possible with non-linear and time/day variables. 
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All lots combined 
 

The results for the first group of complex estimations for the ESP facility are presented in Table 
20. 

 
Table 20 - Estimates for the Basic Complex Density Functions 

Poisson Distribution 
Parameter Estimates Standard Error Probability 

α  21.9641 0.2344 0 
eβ  0.003 0.0015 0.0415 
xβ  0.0573 0.0059 0 
fβ  0.0218 0.0057 0.0001 

120cβ  -0.018 0.1216 0.8825 
Chi-Squared Distribution 

α  20.8978 2.0363 0 
eβ  -0.0036 0.0127 0.7776 
xβ  0.0429 0.0538 0.4253 
fβ  0.0179 0.0485 0.7113 

120cβ  -0.3264 1.1734 0.7809 
Normal Distribution 

σα  7.7684 0.2589 0 
eσβ  0.006 0.0015 0.0001 
xσβ  0.025 0.006 0 
fσβ  0.0296 0.0063 0 

120cσβ  -0.1101 0.1807 0.5425 
μα  21.966 0.3529 0 
eμβ  0.0022 0.0022 0.3246 
xμβ  0.0621 0.0089 0 
fμβ  0.0201 0.0084 0.0167 

120cμβ  -0.0075 0.1741 0.9655 
 
The results for the combined Satellite lots are very similar to those for the Blue lot.  This implies 
that the negative signs in the Green lot are a bit deceptive.  As variables are added to the 
estimations more can be said on this.  The departing capacity variable has no impact on the 
access time in all of the distributions.  This is most likely because the other variables fully 
describe this impact.  In other words, as departing capacity increases so do the number of cars 
entering and leaving the lot and the percentage of spaces filled in the lot.  Thus, the impact of the 
departing capacity is already represented by variables that are more directly related to access 
times (volume at the facility being studied).  All of the variables with positive impacts on access 
times also increase variance.  This will be important in the congestion analysis later. 
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Figure 24 depicts the new distributions against the observed data. 

 
Figure 24 

 
The graph of the first set of complex density functions for all the satellite lots confirms the 
results of the two lots individually.  The Chi-Squared describes the data extremely well 
throughout the range of the data.  In the important region to the right of the peak, the Chi-
Squared is by far the best distribution. 
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The results for the estimations with second-order terms are presented in Table 21. 
 

Table 21 - Estimates for the Second Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  22.2139 0.4501 0 

eβ  0.0184 0.0071 0.0092 
xβ  0.0315 0.0163 0.0534 
fβ  0.0293 0.0256 0.2533 

eeβ  0 0 0.9982 
exβ  -0.0004 0.0001 0.0015 
efβ  0.0006 0.0002 0.0001 
xxβ  -0.0011 0.0003 0 
xfβ  -0.0008 0.0005 0.1012 
ffβ  0.0003 0.0004 0.4232 
120cβ  0.8169 0.2071 0.0001 

120120ccβ  -0.447 0.1093 0 
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The results for the estimations with all the variables are presented in Table 22.  Note that only 
certain estimations work in this case. 
 

Table 22 - Estimates for the Second Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  21.1543 1.1908 0 

tueβ  -0.7044 0.6221 0.2575 
wedβ  -1.1777 1.0521 0.263 
thurβ  -0.248 0.7867 0.7526 

friβ  -1.4128 0.8714 0.105 
satβ  -3.3808 1.0525 0.0013 
sunβ  -1.9599 0.9035 0.0301 

amrushβ  1.3457 0.7479 0.072 
lateamβ  2.5105 0.6533 0.0001 
middayβ  3.7375 0.6245 0 
earlypmβ  5.3597 0.5752 0 
pmrushβ  4.599 0.5551 0 

eβ  0.0197 0.0117 0.0928 
xβ  -0.0007 0.0275 0.9802 
fβ  0.1837 0.047 0.0001 

120cβ  2.9859 0.5104 0 
eeβ  0 0.0001 0.9665 
exβ  -0.0002 0.0002 0.1658 
efβ  0.0005 0.0002 0.0137 
120ecβ  0.0039 0.0046 0.3947 
xxβ  -0.0009 0.0003 0.003 
xfβ  -0.0004 0.0007 0.5658 
120xcβ  0.0161 0.0092 0.0817 
ffβ  0.003 0.0009 0.0011 
120fcβ  0.0412 0.0122 0.0007 

120120ccβ  -1.1424 0.1834 0 
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Figure 25 shows the various Poisson distributions against the observed data. 

 
Figure 25 

 
The Poisson distribution for all the satellite lots is somewhere between the blue and green lot in 
its ability to predict the distribution of access times.  The predictive power is increasing in the 
number of descriptive variables and the fit gets better at all locations on the distribution.  
However, the Poisson distribution with the full complement of descriptive variables never 
approaches the level of fit the Chi-Squared distribution displays with few descriptive variables.  
As in the individual satellite lots, the most obvious improvement is obtained with both non-linear 
and time/day variables included in the estimation. 
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Figure 26 shows the various Normal distributions against the observed data. 

 
Figure 26 

 
As with the other satellite lots, the analytical improvement in the fit of the normal distribution 
with the additional descriptive variables is barely noticeable visually.  The peak has been drawn 
up and the right-hand side of the distribution is slightly more accurately predicted.  As with all 
the other estimations of the Normal distribution, the variables that create the largest improvement 
in the fit of the function are not included due to lack of convergence. 
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Figure 27 shows the various Chi-Squared distributions against the observed data. 

 
Figure 27 

 
As with both the blue and green lots, the more complex density function leads to a better fit to 
the data at the peak and to the right of the peak.  The Chi-Squared distribution seems to be the 
best fit to the data and thus only small improvements in fit are obtained with added descriptive 
variables.  As with the individual satellite lots, the distribution is a very good fit but the non-
linear and time/day variable impacts are not obtained due to the lack of convergence. 
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III.D  Drop-Off Passengers 
 
The data for drop-off passengers is also analyzed with complex density functions.  However, a 
slight difference is necessitated by the lack of data concerning the use of the lot that was utilized 
for the other facilities.  There is no data on the number of cars entering, leaving or physically 
located in the terminal roadway.  Thus, the only right-hand side variables used to analyze 
congestion are the dummy variables for time of day and day of week along with the departing 
capacity.  This means that all terms for the variables e, x and f are not included since they are not 
available for these data. 
 

Table 23 - Estimates for the Linear Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  97.6023 .7345 0 

120cβ  7.7772 .8122 0 
Chi-Squared Distribution 

α  83.5833 .3021 0 
120cβ  7.1196 .3364 0 

Normal Distribution 
σα  68.5322 1.1462 0 
120cσβ  4.6626 1.5505 0.003 
μα  97.6015 1.6080 0 
120cμβ  7.7758 1.9085 0 
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The graphs of these density functions against the actual data are contained in Figure 28.  Again, 
the data are aggregated in 10-second intervals for presentation. 
 

 
Figure 28 

 
The Poisson distribution fits the data well with the exception of being slightly right shifted.  The 
Chi-Squared distribution has difficulty with the distribution and does not capture the right-hand 
tail very well at all.  The Normal distribution severely underestimates the peak but captures the 
far right end of the distribution.  When examining the percentile passengers below, the poisson 
will be the best except for high percentile passengers in which case the normal may actually 
better describe the access time process.
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The results for the estimates of the density functions that contain second-order terms are 
presented in Table 24. 
 

Table 24 - Estimates for the Non-Linear Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  97.5640   

120cβ  7.7704   
120120ccβ  .00797   

Chi-Squared Distribution 
α  83.4687 .3053 0 

120cβ  5.5899 .5849 0 
120120ccβ  .5062 .1613 0.002 

 
The results from the full complex density function estimations are contained in Table 25. 
 

Table 25 - Estimates for the Second Complex Density Functions 
Poisson Distribution 

Parameter Estimates Standard Error Probability 
α  109.1568 2.8209 0 

tueβ  -1.1429 2.9463 .6981 
wedβ  -39.0385 2.9072 0 
thurβ  -35.9897 2.5098 0 

friβ  -10.6754 2.8738 0 
satβ  -11.9001 3.0275 0 
sunβ  -49.2604 3.5919 0 

amrushβ  0.9212 2.8479 .7463 
lateamβ  10.5234 2.4029 0 
middayβ  -1.8622 2.8824 .5182 
earlypmβ  6.2619 2.8807 .0297 
pmrushβ  15.9967 2.8166 0 

120cβ  20.1194 9.927 0 
120120ccβ  -1.2701 .5267 .0159 
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The density functions are graphed against the actual…. 

 
Figure 29 

 
As the complexity of the distribution is increased, the fit becomes better at all points in the data.  
The right hand tail of the distribution is never fully explained by the Poisson distribution. 
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Figure 30 

 
While the linear density function is better than the simple density function, the Normal 
distribution is not good at describing the peak of the distribution. 
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Figure 31 
 
The Chi-Squared distribution does not work well for these data.  Unlike the satellite lots, where it 
fit quite well, the drop-off passenger data are not amenable to use of this distribution. 
 

III.E  Summary of Complex Density Function Analysis 
 
The increase in predictive power as terms are added to the density function is apparent and 
intuitive.  This better fit will be put to use in the following sections to describe the access 
patterns from the various facilities.  Given the difference in the goodness of fit from the various 
distributions, each facility will have a different distribution that is the best and thus discussed the 
most in the following sections. 
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IV. Facility Level Congestion Analysis 
 

The purpose of estimating the density functions presented in the last two sections was to create a 
statistical base from which to examine congestion curves.  For all but the Poisson distribution, 
the congestion curves will not have curvature (this will become clear later) but will still show the 
impact of increasing volume on access time if only in a linear fashion. 
 
The impacts on access times are presented first for the full facility.  These are the least 
informative but the easiest to understand and follow.  After looking at the impact of various 
phenomena on the access times for an entire lot, the impacts will be examined for two different 
sub-sets.  Congestion will be studied at particular points in time and the impact of various 
conditions on access time will be examined specifically. 
 
The access times and congestion will be studied by looking at several figures.  Primarily, the 
distribution of access times will be examined and various benchmarks will be used to discuss 
congestion.  Table 26 below describes the measures used. 
 

Table 26 - Benchmark Measures for Describing Congestion 
Name Description 

at  Mean of the Access Time Distribution 
10%tile 10th Percentile of the Access Time Distribution3 
25%tile 25th Percentile of the Access Time Distribution 
50%tile 50th Percentile of the Access Time Distribution 
75%tile 75th Percentile of the Access Time Distribution 
90%tile 90th Percentile of the Access Time Distribution 
95%tile 95th Percentile of the Access Time Distribution 
99%tile 99th Percentile of the Access Time Distribution 
999%tile 99.9th Percentile of the Access Time Distribution 

 
The mean of the access times in the distribution returns the average time it takes a passenger to 
access the terminal.  There will be times that the mean is a relevant measure, but this is not likely 
to be the most important benchmark measure.  The percentiles of the distribution are used 
because this is most likely the measure of importance in maintaining satisfactory service levels at 
the facilities.  It is likely that airport officials desire to have “X percentage of passengers 
accessing the terminal within Y minutes”.  Most likely the percentiles of interest in this setting 
are between the 75th and the 99th.  The lower percentiles are given to show the impact of various 
conditions on the fastest users of the facility and the higher percentiles are given to demonstrate 
the true impact of heavy congestion on the “unlucky” passenger.  
 
Unless otherwise specified, the Poisson distribution with full descriptive variables and the Chi-
Squared and Normal distributions with the basic complex density function are used in this 
analysis.  This means that the only distribution that can display curvature to the access time or 
congestion levels is the Poisson. 
 

                                                 
3 The Xth percentile is the value for which X% of the passengers access the terminal in that time or less.   
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IV.A  ESP Facility 
 
The ESP facility remains the most difficult lot to work with due to the lack of observations.  
Table 27 contains the benchmark levels for the three distributions. 
 

Table 27 - Access Time and Congestion Benchmarks 
 Poisson Normal Chi-Squared 

at  12.2455 10.5863 10.7928 
10%tile 5.9559 8.3595 5.1677 
25%tile 8.4490 9.2710 7.0413 
50%tile 11.5565 10.1277 9.6384 
75%tile 14.7412 10.8968 12.8370 
90%tile 17.6714 11.7720 16.2789 
95%tile 19.5195 12.3059 18.6049 
99%tile 23.4735 13.3773 23.5098 
999%tile 29.3843 14.6814 29.8698 
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Figure 32 shows the benchmarks for the three distributions. 
 

 
Figure 32 

 
A few comments are possible from these figures.  From Table 27 it is apparent that all three of 
the distributions are left-shifted from central (50th percentile value less than the average).  More 
will be said of this after the all the congestion results are presented.  The Normal distribution 
provides unsatisfactory percentile results (this could have been corrected by using the simple 
instead of the basic complex density function for these results) but the other two distributions are 
similar. 
 
The access times are steadily climbing through the percentiles at a relatively constant slope.  This 
is by no means necessary (see graphs below for difference).  The Poisson or the Chi-Squared 
distributions are the best for describing this data and so the benchmarks from those distributions 
can be discussed.  While these are still aggregate figures, a few comments can be made.  While 
the mean access time for this lot is around 10 minutes (according to actual data and the 
distributions estimated), the 90th percentile access time is about 16-17 minutes.  This means that 
it takes longer than this for 10% of the passengers to access the terminal from this facility.  The 
95th percentile access time is about 19 minutes and the 99th percentile access time is about 23.5 
minutes.  This situation is more strongly represented in the time of day and day of week 
congestion analysis below. 
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IV.B  Garage Facility 
 
Table 28 contains the benchmark levels for the three distributions. 
 

Table 28 - Access Time and Congestion Benchmarks 
 Poisson Normal Chi-Squared 

at  8.9432 9.0997 8.3906 
10%tile 4.8258 3.8305 3.5330 
25%tile 6.3607 6.0256 5.0661 
50%tile 8.2559 8.5316 7.2446 
75%tile 10.3198 11.0732 10.0035 
90%tile 12.3172 13.4018 13.0596 
95%tile 13.5847 14.7777 15.1633 
99%tile 15.9934 17.3979 19.6674 
999%tile 18.9615 20.3184 25.6019 

 
Figure 33 shows the benchmarks for the three distributions. 

 
Figure 33 
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Again, all of these distributions are left-shifted from central.  The Chi-Squared distribution did 
the best job of describing the data and so most attention is paid to that distribution.  Note the 
rapid rise in access time at high percentiles in this facility.  This is partially a function of the fact 
that there are no shuttle buses.  When there are shuttle buses running from the parking facility to 
the airport terminal, people are more likely to make an effort to catch the next shuttle (since they 
don’t know for sure how long it will be between shuttles).  In the garage, no shuttle is necessary.  
If someone finds a parking space quickly and has plenty of time they may choose to rearrange 
their luggage (or whatever activity they choose) in the lot.  They can do this because they are not 
dependent on an external schedule (shuttle) to get the rest of the way to the terminal. 
 
The increasing slope of the percentile lines does imply one other thing about congestion in the 
garage facility.  This is indicative of true congestion at high usage levels.  While not conclusive 
proof, this is compatible with there being a small subset of people that experience highly 
elevated access times from this facility.  This will be discussed in detail in the sections that 
examine congestion under particular conditions. 
 

IV.C  Satellite Facilities 
 
Blue Lot 
 
Table 29 contains the benchmark levels for the three distributions. 

Table 29 - Access Time and Congestion Benchmarks 
 Poisson Normal Chi-Squared 

at  20.9684 20.2153 19.3520 
10%tile 14.0599 11.8197 11.5056 
25%tile 16.6888 15.4692 14.4079 
50%tile 19.9138 19.5675 18.1782 
75%tile 23.5730 23.7848 22.5661 
90%tile 27.5027 27.7721 27.0475 
95%tile 30.3384 30.2827 29.9933 
99%tile 36.7518 35.3473 36.0746 
999%tile 44.3119 41.7966 43.7605 
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Figure 34 shows the benchmarks for the three distributions. 

 
Figure 34 

 
As with all the lots, the distribution for the blue lot is left-shifted.  The full complex Poisson and 
the Chi-Squared distributions are the best fit to the data and they will be the results discussed 
here.  Note the increasing slope of the percentile curves at high percentile values.  As with the 
garage lot, this is indicative (though not proof) of congestion for some periods in the sample.  
More will be said on this in later sections when specific factors leading to congestion are 
discussed. 
 
The median passenger accesses the terminal in about 19 minutes.  The rapid escalation of values 
occurs after about the 75th percentile.  The 99th percentile access times are about double the 
median percentile access times.  The underestimating of the percentile benchmarks by the 
Normal distribution becomes quite obvious at these higher percentiles.  The curvature of the 
access time graph (congestion curve) will be looked at in detail below. 
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Green Lot 
 
Table 30 contains the benchmark levels for the three distributions. 
 

Table 30 - Access Time and Congestion Benchmarks 
 Poisson Normal Chi-Squared 

at  22.5111 22.9939 22.0628 
10%tile 15.4481 13.9881 13.6696 
25%tile 18.3218 17.9937 16.8305 
50%tile 21.7292 22.4598 20.8858 
75%tile 25.3788 26.9531 25.5659 
90%tile 28.8779 31.0307 30.3271 
95%tile 31.1074 33.5210 33.4405 
99%tile 35.7421 38.2008 39.8061 
999%tile 42.1541 43.6301 47.7850 

 
Figure 35 shows the benchmarks for the three distributions. 

 
Figure 35 
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While the full complex Poisson distribution fits the data reasonably well, the Chi-Squared 
distribution is by far the best fit for this lot.  The distribution for this lot has a different shape 
than the Blue lot.  It is slightly less left-shifted.  The percentile access times are closer to those 
from the blue lot early than late.  This means that there are most likely a larger number of 
observations from the truly congested periods for this lot.  This will be discussed in more detail 
in later sections. 
 
All Lots 
 
Table 31contains the benchmark levels for the three distributions. 

Table 31 - Access Time and Congestion Benchmarks 
 Poisson Normal Chi-Squared 

at  21.8201 21.5169 20.5526 
10%tile 15.1275 12.6022 12.5028 
25%tile 17.8403 16.5299 15.5068 
50%tile 21.0706 20.9125 19.3876 
75%tile 24.5373 25.3783 23.8674 
90%tile 27.8391 29.5348 28.4611 
95%tile 29.9015 32.0933 31.4619 
99%tile 33.9435 37.1953 37.6238 
999%tile 38.7530 43.4613 45.3718 
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Figure 36 shows the benchmarks for the three distributions. 

 
Figure 36 

 
As for each of the other analyses, the total satellite results lie “between” the blue lot and green 
lot results.  The strong increase in the slope of the percentile lines again implies the presence of 
strong congestion during at least some periods.   
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IV.D  Drop-Off Passengers 
 
Table 32 contains the benchmark levels for the drop-off passengers. 
 

Table 32 - Access Time and Congestion Benchmarks 
 Poisson Normal Chi-Squared 

at  97.56 97.60 83.47 
10%tile 49.33 27.92 56.54 
25%tile 68.13 57.40 64.54 
50%tile 91.81 97.81 74.26 
75%tile 117.99 142.03 84.79 
90%tile 143.55 184.75 95.41 
95%tile 159.24 209.24 102.01 
99%tile 190.30 259.31 118.04 
999%tile 227.68 320.97 138.08 

 
Figure 37 shows these benchmarks for each distribution. 
 

 
Figure 37 
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IV.E.  Summary of Facility Level Congestion Analysis 
 
The congestion curves show by the percentile access times are of interest for several reasons.  
First, they definitely imply that congestion is an issue for at least a small percentage of 
passengers.  In most of the lots the 99th percentile access time is approximately twice the median 
access time.  For the drop-off passengers this increase is even greater – approaching 2.5 times the 
median access time. 
 
This relationship shows that using the difference in average access time between various lots and 
conditions might strongly understate the congestion impact.  If the airport is concerned with the 
access time of a high percentile passenger, the impact might be as much as 2.5 times higher than 
that found with an analysis of the means. 
 
The strongly increasing slope of the percentile curves implies that the density functions are 
capturing at least some of the congestion that is present at high volume time periods.  The next 
section will specifically address the congestion during these periods. 
 
 
V. Time of Day and Day of Week Congestion Analysis 

 
In this section, the distributions are analyzed by time of day and day of week.  Actual congestion 
analysis is saved for the next section, but the impact of increasing volume on the distributions is 
evident by examining the lots under differing conditions.  For each lot, all three distributions are 
compared for each of four different time periods.  In addition, each distribution is compared 
across the four dime periods.  The graphs of the three distributions across time periods are 
presented mostlyto show how the different distributions react to the differing conditions.  
Commentary will be limited to discussion of how the individual distributions change over the 
time periods. 
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V.A  ESP Facility 
 
Figures 38 and 39 show the different distributions for the two time periods of relevance for the 
ESP lot. 
 

 
Figure 38 
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Figure 39
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Figures 40, 41, and 42 show how each of the distributions handle the changing conditions.  Only 
the Normal distribution changes enough to be noticeable.  This is likely a result of the small 
number of observations for this lot. 
 

 
Figure 40 
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Figure 41 

 
Figure 42 
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The Normal distribution shows a small change between the two time periods.  A slightly more 
spread and rightward shifted distribution is evidenced for the Saturday time period.  Not much cn 
be read into this given the small number of observations and the small change evidenced in the 
distributions. 
 

V.B Garage Facility 
 
Figures 43, 44, 45, and 46 show the various distributions over the four time periods. 
 

 
Figure 43 
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Figure 44 

 
Figure 45 



 74

 
Figure 46 

 
The main characteristic of these graphs worth noting is that each of the distributions remains 
fairly constant relative to the others over all four time periods.  In other words, the Normal 
distribution always lies below and to the right of the other two distributions while the Poisson 
distribution has a higher peak that descends more rapidly than the other two distributions in all 
four time periods.  The Chi-Squared distribution always has a larger tail to the far right side of 
the distribution than the other two distributions.  Thus, the characteristics of the fir for the entire 
lot remain the same in the individual time periods as well. 
 



 75

Figures 47, 48, and 49 contain the graphs of the individual distributions for each of the time 
periods. 
 

 
Figure 47 

 
The Poisson distribution shifts to the right in more busy time periods.  The least busy period is 
the Saturday morning time period and the busiest (for the garage) is the Wednesday early 
evening period (See Reed (2001) for details of garage and other lot activity).  The shifts are quite 
small and this explains the small shift in the overall density function as parameters are added. 
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Figure 48 

 
Given the small change in the distribution for the entire garage facility, the small changes over 
time periods are not surprising for the Chi-Squared distribution.  With more explanatory 
variables, perhaps this change would be greater.  However, the garage data seems to be more 
susceptible to changes in variance than in average access time (see the Normal distribution 
below). 
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Figure 49 

 
The Normal distribution shows a small change in the average access time (relative location of the 
peak) and also a small change in the “spread” of the distribution (variance).  The changes are 
small and hard to see, but the distribution does “spread” during peak periods.  This is evidence 
that at peak periods there is congestion for at least a portion of the passengers that use the 
facility. 
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V.C  Satellite Facilities 
 
Blue Lot 
 
Figures 50, 51, 52, and 53 show the various distributions over the time periods. 
 

 
Figure 50 
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Figure 51 

 
Figure 52 
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Figure 53 

 
In the satellite lots the value of the non-linear terms can be seen.  While the Chi-Squared 
distribution and the Poisson distribution fit the overall data equally well, the Poisson moves with 
changing conditions more than the Chi-Squared.  In each of the time periods, the Chi-Squared 
lies to the right of the Normal with a larger far right tail in the distribution.  However, the relative 
location of the Poisson changes over the time periods. 
 
In the Tuesday morning and Saturday morning periods, the Poisson lies to the left of the chi-
Squared and has a much smaller tail.  In the Wednesday afternoon period, the Poisson 
distribution lies to the right of the Chi-Squared for much of the distribution with a very similar 
tail.  In the Thursday mid-day period, the Poisson lies almost directly above the Chi-Squared but 
with a much smaller tail.  While the Chi-Squared did a better job of describing the data for the 
whole distribution, the non-linear terms allowed a more micro-level analysis with the Poisson 
distribution. 
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Figures 54, 55, and 56 show the various times of day for the different distributions. 
 

 
Figure 54 

 
The Poisson distribution moved considerable to caption the differences in the distribution of 
access time over the different periods.  The two higher volume periods (Wednesday early 
afternoon and Thursday mid-day) are represented with distributions that are right-shifted and 
have elongated right-hand side tails (this is less obvious than in the comparison to the simple 
density function in Section III).  The two lower volume periods (Tuesday morning rush hour and 
Saturday morning) have peaks further to the left with smaller right-side tails.  The non-linear and 
time variables moved the distribution significantly to match the data. 
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Figure 55 

 
The Chi-Squared distribution shifts to the right to capture higher volume periods, but not nearly 
as far as the Poisson.  The lack of non-linear and time variables precludes a larger shift in the 
distributions.  The Chi-Squared distribution fits the data quite well, but is not as good for micro-
level analysis as a distribution with more terms. 
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Figure 56 

 
While the Normal distribution does not describe the data well in general, some interesting results 
are evident from these distributions.  First, the peaks do move to the right in higher volume 
periods.  Second, the distribution is both the furthest left and the narrowest of the distributions 
shown.  The Thursday afternoon period is the furthest right and also the widest distribution.  This 
means that as volumes increase, not only does it take longer for the average passenger to access 
the terminal; it also means an even stronger increase in higher percentile passengers access times 
(see below for this analysis). 
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Green Lot 
 
Figures 57, 58, 59, and 60 show the different distributions over the various time periods. 

 
Figure 57 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 85

 
Figure 58 

 
Figure 59 
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Figure 60 

 
The impact of the different time of day on the green lot distributions is almost identical to that 
for the blue lot.  Discussion of the percentile changes is carried out below. 
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Figures 61, 62, and 63 show each distribution and how it reacts to the differing conditions. 

 
Figure 61 

 
The results on the green lot are nearly identical to those on the blue lot with the exception of the 
exact value over which the distributions are centered. 
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Figure 62 

 
The changes in the Chi-Squared distribution for the green lot are also nearly identical to those for 
the blue lot.  There is a bit more differentiation between each of the time periods in the green lot, 
but this difference is not drastic. 
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Figure 63 

 
The changes in the Normal distribution over the time periods is similar to that for the blue lot but 
perhaps a little less obvious.  The distributions still move right and spread as the volume in the 
period rises.  Again, both sat4ellite lots behave similarly in these respects. 
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ALL lots 
 
Figures 64, 65, 66, and 67 contain the graphs of the distributions for each time period. 

 
Figure 64 
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Figure 65 

 
Figure 66 
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Figure 67 

 
The graphs for the combined lots are very similar to each of the individual lot graphs above.  The 
nearly identical pattern to the lots in this micro-level analysis implies that the differences in 
access time patterns between the blue and green lot are not specific to the lot but are a result of 
differing conditions when the data were collected from these lots. 
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Figures 68, 69, and 70 show the movement of the distributions over the time periods. 

 
Figure 68 

 
There is almost no difference in the graph for both satellite lots compared to the individual lots. 
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Figure 69 

 
The Chi-Squared distribution shows a bit less flexibility for the combined lots than for the 
individual lot data.  This could be a function of the lack of non-linear and time variables terms.  
The graphs are basically the same as for the individual lots with a bit less flexibility across the 
time periods evidenced. 
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Figure 70 

 
The Normal distribution graphs look very similar to the individual lot graphs.  As volume 
increases, the distributions shift to the right and spread.  This shows that at least some passengers 
are meeting with congestion in the higher volume periods. 
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V.D  DROP-OFF PASSENGERS 
 
This facility differs slightly from the others in that there is no lot usage data.  Thus, all the 
variance in time of day and day of week is derived from the dummy variables and the departing 
capacity variable.  Figures 71, 72, 73, and 74 show the various distributions over the four time 
periods. 
 

 
Figure 71 
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Figure 72 

 
Figure 73 
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Figure 74 

 
The lack of fit from the Chi-Squared and Normal distributions is evident in all of the time 
periods.  The Normal distribution suffers from a lack of non-linear and time specific effects due 
to the lack of convergence of these models and the Chi-Squared suffers from an inability to 
stretch to fit the data.  Unlike the satellite (and other) facilities, the Chi-Squared distribution is 
not satisfactory at any time period.  The Poisson distribution fits the data fairly well and shifts to 
meet the different conditions.
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Figures 75, 76 and 77 contain the graphs of the individual distributions for each of the time 
periods 

 
Figure 75 

 
The Poisson distribution shifts to accommodate the congestion present in the morning periods.  
Both of the morning periods showed congestion, much heavier on Tuesday, and the distribution 
shifts to the right to accommodate this.  Because the Poisson does not have a parameter for the 
spread of the distribution, the full congestion impact is not registered in the graph. 
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Figure 76 

 
The Chi-Squared distribution shows a poor fit to all the time periods.  This distribution is not 
appropriate for these data. 
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Figure 77 
 
The Normal distribution only converged for the linear case and so there is little shifting of the 
distribution across congestion time periods.  The spread of the distribution fits the upper reaches 
of the distribution nicely, but due to lack of convergence, the distribution does not represent the 
middle of the data well at all. 
 

V.E. Summary of Time of Day and Week Congestion Analysis 
 
The use of the complex density functions allows the discovery of congested time periods from 
the analysis.  In addition, it allows a graphical analysis of how strong the congestion is during 
any particular period.  Those distributions that converge for higher complexity show the greatest 
ability to reflect the congestion in the data. 
 
It is clear that there are highly congested times and also that during these periods the right hand 
tail of the distribution is further right shifted than the peak.  This means that examining just the 
average access time during different periods does not reveal the true cost of congestion.  If the 
facility is interested in a high percentile passenger, the impact of congestion is much higher than 
the difference in average access time during these periods. 
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VI. Individual Variable Level Congestion Analysis 
 
Some of the most important results from this study are the relationships between access time and 
the individual variables that can be monitored directly by airport authorities.  These variables are 
those included on the right-hand side in the estimations.  Access times are studied relative to 
each of these variables.  The variables examined are: 1) the number of cars entering the facility 
during the hour, 2) the number of cars exiting the facility during the hour, 3) the percentage of 
parking spaces already filled when the passenger arrives at the facility, and 4) the departing 
capacity at the airport in the next two hours. 
 
As stated above, the departing capacity variable used is that for 120 minutes.  This seemed to be 
the departing capacity variable that led to the best fit in the estimations.  However, other time 
periods were nearly as good (from 60 minutes to 180 minutes) due to the high correlation in 
these variables. 
 
For each of the four variables, three cases are examined: a low, middle, and high value case.  
This means that, for the first variable, the impact of the number of cars entering the facility is 
examined for low values of the other variables, average values of the other variables, and high 
values of the other variables.  This is equivalent to looking at the impact of the variable in 
question during slow periods at the airport, during average periods at the airport and during peak 
periods at the airport. 
 
Each lot is again examined separately for each variable and case.  The values of the variables in 
question are allowed to range roughly from their minimum observed value to 125% of their 
maximum observed value.  This allows projection of the impact of the variable into the future 
when usage rates may increase at the airport.  The impact of each of the variables is studied on 
both the mean of the access time distribution and the percentile benchmarks for all three 
distributions.  For each distribution, the most complex case estimated is used in the analysis.  
This means that the Poisson distribution is examined for the full complex case and the Normal 
and Chi-Squared distributions are examined for the basic complex case.  While the Poisson 
distribution will allow an examination of the curvature of the relationships it must be kept in 
mind that the Chi-Squared distribution was a better fit for almost every facility.  Sometimes the 
results of these two distributions must be “averaged” to obtain the best indication of true 
relationships. 
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VI.A.  ESP Facility 
 
Figure 78 shows the relationship between mean access time and the number of cars entering the 
facility under medium volume conditions. 
 
 

 
Figure 78 

 
Note that both the Chi-squared and Normal distributions display slightly upward slopes to the 
line.  As more cars enter the facility the access time rises slightly.  The impact of this variable 
appears to be quite low however.  In the case of the Poisson distribution, where there are non-
linear terms, note that at low levels of volume an increase in the number of cars entering actually 
lowers the access time.  This seems to be a contradiction.  However, this is correct and picking 
up the influence of shuttle frequency.  As volume increases, the frequency of the shuttles 
increases and thus the access time is reduced.  This is true until the point where cars entering the 
facility congest the facility and slow the access down more than the increased shuttle frequency 
speeds access.  This appears to happen at around 35-40 entries per hour.  This is at roughly 60 
percent of the maximum observed in the data. 
 
The other variables are not examined for this lot because the low number of observations led to 
deceptive results in some variables.  The lack of precision with which the variables are measured 
shows quite clearly in  this micro-level analysis (particularly for the full complex Poisson 
distribution which had many parameters to estimate). 
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GARAGE Facility 
 
Figures 79, 80, and 81 show the relationships between access time and the various conditions 
affecting access times. 
 
The relationship between the number of cars entering the facility and the access time is shown 
here for high volume conditions (Tuesday morning rush hour for the Poisson distribution).  Both 
the Chi-Squared and the Normal distributions show a positive slope to the line indicating that 
increased volume slows access time at this facility.  The Poisson distribution line shows a 
decrease in the access time for high levels of volume.  It should be recalled that the actual data 
do not contain a value above approximately 625.  Thus, the curve beyond this point is not part of 
the estimation. 
 
While it is doubtful that the curve actually turns down (and this is in the region that the Poisson 
distribution had the most difficulty fitting the actual data), the concavity of the line in the 
Poisson distribution is strong evidence that this variable is not responsible for congestion at this 
facility.  It appears that the impact of more entering cars does not grow after 400-500 cars are 
entering the lot. 

  
Figure 79 
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The relationship with the number of cars leaving seems to be constant or slightly downward 
sloping.  This was true for all conditions and is show for low volume conditions for this facility 
(late morning on Saturday for the Poisson distribution).  The Normal distribution shows a slight 
upward trend and the Chi-Squared a slight downward trend.  The Poisson distribution shows a 
stronger, increasing and downward trend as the number of cars exiting the lot increases.  It does 
not appear that the volume of cars leaving the lot contributes to congestion.  In fact, the impact 
seems to be to reduce congestion ceteris parabus. 
 

 

Figure 80 
 
The relationship between departing capacity and the access time is presented for two differing 
sets of conditions.  In figure 79, the relationship is shown during a high volume period (Tuesday 
morning rush hour for the Poisson Distribution).  The Normal distribution shows a downward 
slope to the relationship while the Chi-Squared distribution shows a nearly constant (but 
downward) relationship.  The Poisson shows a slight upward relationship at a much higher level 
of access times.  This shows the impact of the non-linear and time variables included in the 
complex Poisson distribution that are not included in the Chi-Squared and Normal distribution 
estimations. 
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Figure 81 
 
Figure 81, shows the same relationship between departing capacity and access times but for a 
very low volume period (Saturday morning for the Poisson distribution).  The Normal and Chi-
Squared distributions are the same as in the last figure but at a slightly lower access time level.  
The Poisson distribution now shows a slight downward relationship at a very low access time.  
Again, the difference in levels between the Poisson and other distributions is attributable to the 
extra terms included in the estimation. 
 
The percentage of spaces filled in the facility is not examined because the Poisson distribution 
fits this variable very poorly.  The Chi-Squared and Normal distribution both show a strong 
upward slope to the relationship indicating that the number of spaces filled is indicative of 
elevated access times. 
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VI.C  Satellite Facilities 
 
Blue Lot 
 
Figures 82-86 show the relationships between access time and the various conditions. 
 

 

Figure 82 
 
The relationship between the number of cars entering and access time is shown for low volume 
conditions (Saturday morning for the Poisson distribution).  The Normal distribution shows a 
very slight upward trend to this relationship while the Chi-Squared distribution shows an equally 
slight downward trend.  The Poisson distribution, with the extra non-linear terms, shows the 
rapidly increasing slope associated with congestion.  In this very low volume period, average 
access times increase from about 17.5 to about 18 minutes as the number of cars entering moves 
from 0 to 100 (roughly 60 percent of the maximum in the data).  The slope begins to increase 
rapidly from this point.  From 100 entering cars to 150 entering cars the access time increases 
from 18 to 20 minutes.  From 150 to 200 cars entering the access time increases from about 20 to 
24 minutes.  This is indicative of congestion effects from this variable.  The fact that is 
observable at low volume conditions shows how important this variable is to congestion. 
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Figure 83 
 
The relationship between cars leaving the lot and access time is also shown for low volume 
conditions (Saturday morning for the Poisson distribution).  The Normal and Chi-Squared 
distributions both show an upward trend in this relationship.  The Poisson distribution shows a 
downward trend.  The better fit of the complex Poisson distribution leads to the conclusion that 
the volume of cars exiting has a downward impact on access times.  This means that the 
congestion impact of the volume is outweighed by the increased shuttle frequency brought by 
exiting passengers at low volumes. 
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Figure 84 
 
The relationship between the percentage of spaces filled in the facility and access times is also 
shown for low volume conditions.  All three distributions show an upward trend in this 
relationship.  There is a slight “steepening” of the Poisson distribution curve, which implies 
congestion effects from the lot being full.  It appears that this relationship is roughly linear and 
that an increase in the percentage of spaces filled increases access time.  It should be pointed out 
that the satellite lots are closed when they are close to full and thus some of the congestion 
impact is avoided or transferred to outside the lot (see Reed (2001) for a discussion of this). 
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Figure 85 
 
The relationship between departing capacity and access times is shown for two different sets of 
conditions.  Figure 85 shows the relationship for a high volume set of conditions (Thursday early 
afternoon for the Poisson distribution).  The Normal and Chi-Squared distributions show an 
upward trend to the relationship.  The departing capacity figures extend to twice the maximum 
observed in the data and so the highest value in the data (about 2.5) is associated with a 25 to 27 
minute access time for these distributions.  The Poisson distribution shows a much steeper slope 
to the relationship.  This distribution shows an increase in access time from about 13 minutes at 
the lowest observed departing capacity to about 48 minutes at the highest observed departing 
capacity.  It shows an access time of over 60 minutes with as little as a 20% increase in airside 
volume. 
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Figure 86 
 
Figure 86 shows the same relationship for medium volume conditions (Tuesday mid-day for the 
Poisson distribution).  The relationships remain the same except that the levels are lower and the 
slope of the relationship is less steep for the Poisson distribution.  The average access time rises 
from about 16 minutes for the minimum capacity to about 34 minutes at the maximum observed 
capacity.  The decreasing slope is deceptive and some of this congestion is actually picked up by 
entering cars rather than this variable. 
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Green Lot 
 
Figures 87, 88, 89, and 90 show the relationships between access time and the various 
conditions. 
 

 

Figure 87 
 
The relationship between the number of cars entering the lot and access time is shown for a 
medium volume set of conditions (Tuesday mid-day for the Poisson distribution).  The Normal 
and Chi-Squared distributions both show an upward trend in the relationship.  The Poisson 
shows this as well except for at high levels of entering vehicles.  However, the portion of the 
Poisson curve that is downward sloping is all above the actual observed values in the data and 
thus the downward trend should not be taken too seriously.  The decreasing slope of the line 
merely shows that congestion from entering cars peaks at around 30 cars entering the lot per 
hour. 
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Figure 88 
 
The relationship between the number of vehicles leaving the lot and the access time is also 
shown for a medium volume period.  The Normal and Chi-Squared distributions show a slight 
downward trend (basically constant) and the Poisson distribution shows a nearly linear upward 
trend.  The curve for the Poisson is not convex and thus this variable does not seem to indicate 
congestion for these data either. 
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Figure 89 
 
The relationship between the percentage of spaces filled and the access time is represented for a 
medium volume set of conditions.  The Normal and Chi-Squared distributions both show a slight 
downward trend.  The Poisson shows a downward relationship until the lot is half filled and then 
a very rapidly increasing function.  It should be noted that this lot was never less than about half 
filled during the study and thus the right side of this graph is more important.  The relationship 
for the Poisson distribution indicates that this variable may be indicative of the congestion for the 
facility. 
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Figure 90 
 
The relationship between departing capacity and access time is displayed for a low volume 
period Saturday morning for the Poisson distribution).   The Chi-Squared and Normal 
distributions both show a negative relationship.  The Poisson distribution shows an increasing 
relationship with a decreasing slope.  For this lot, it appears that either the percentage of parking 
spaces filled is the variable that most represents the congestion or it is a combination of variables 
and these two-dimensional representations don’t pick up that relationship. 
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All Lots 
 
Figures 91, 92, and 93 show the relationships between access time and the various conditions. 

 

Figure 91 
 
The relationship between the number of cars entering the facilities and the access time is shown 
for a medium volume set of conditions (Tuesday mid-day for the Poisson distribution).  The Chi-
Squared distribution shows a slight downward relationship while the Normal and Poisson 
distributions show a slight upward trend.  The Poisson distribution is linear and does not convey 
the appearance of congestion at high levels.  This is consistent with the fact that cars entering the 
lot slow access but also increase frequency, which mitigates the congestion effect. 
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Figure 92 
 
The relationship between the number of cars leaving the facility and access time is shown for a 
high volume period (Thursday afternoon for the Poisson distribution).  The Normal and Chi-
Squared distributions show a slight upward trend while the Poisson shows a decreasing trend.  
This pattern is similar to the pattern in the individual lot relationships. 
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Figure 93 
 
The relationship between the percentage of spaces filled and access time is shown for a low 
volume period.  The Normal and Chi-Squared distributions show an upward relationship and the 
Poisson shows a strong upward relationship with convexity.  The congestion is quite evident in 
this variable.  Access times approach 55 minutes for lots that are full.  Actual data points from 
full satellite lots are not inconsistent with this strong upward slope in the Poisson distribution for 
this condition. 
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VI.D  Drop-Off Passengers 
 
The drop-off passenger data are compared to the departing capacity data.  Figure 94 contains this 
relationship for a midweek time period. 
 

 
Figure 94 

 
The Chi-Squared and Poisson distribution both show strong upward trends to the average drop-
off time as departing capacity increases.  The normal distribution shows a linear congestion 
curve due to the fact that no non-linear terms converged for this distribution.  The Chi-Squared 
distribution shows a convex shape to the curve and the Poisson distribution shows a concave 
shape.  In this distribution, the Poisson distribution fit the data much better.  The shape of this 
curve implies severe congestion early in the process and an asymptotic leveling of the 
distribution at very high levels of departing capacity.  Of course, the portion of the curve that is 
concave lies outside the current data. 
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VI.E  Summary of Individual Variable Congestion Analysis 
 
The individual variable analysis shows the benefits of utilizing complex density functions.  
Those distributions that converged for higher-order functions exhibit greater curvature in the 
predicted mean access times.  This means that even the average access time exhibits non-linear 
changes over time and more complex functions better fit the data. 
 
The curvature in the congestion curves has become more evident at each level of complexity.  
The steep curves for some of the distributions show that some of the variables are extremely 
important to defining the congestion and can have large impacts on the accessibility of the 
airport terminal. 
 
 
Concluding Remarks and Recommendations 
  
Several results were obtained in this study.  In addition to the various facility and condition 
specific results, a few more general results of import should be mentioned.  First, the direct 
estimation of density functions was shown to be possible for a broad class of data and 
distributions.  It proves difficult to obtain estimates for complex density functions for the more 
sensitive distributions (normal and chi-squared in this report).  More work is being carried out to 
determine if these complex density functions can be estimated properly.  However, even with the 
level of complexity utilized, improvements in congestion analysis are achieved. 
 
The next general result of import is that the complex density function analysis that allows 
potential congestion related terms to enter in a non-linear fashion greatly increases the predictive 
power of the estimations.  This was obvious in the Poisson and was even apparent in the Normal 
and Chi-Squared distributions where the non-linear and day/time dummy variables could not be 
included. 
 
A third general result is that the estimation of the density function instead of estimation of mean 
benchmarks (such as a regression yields) is necessary for capturing the impact of congestion.  
The increasing difference in access times for high percentile passengers compared to the mean 
passenger is an important difference that planners need to understand.  Estimates of mean values 
over various conditions do not tell the whole story concerning the impact of volume on access 
times (or any other distributional data subject to congestion conditions). 
 
Specific results to the BWI airport and the facilities studied are left primarily to the sections 
above.  However, a few main points are reiterated here. 
 
The facilities at BWI, with the exception of the ESP lot, all showed definite signs of being 
subject to congestion during some peak periods.  The evidence was stronger for some lots than 
for others.  The strongest evidence was in the satellite lots where even in low volume periods, 
high average access times are possible under certain conditions.  The percentage of spaces filled 
in the facility lot is a very important predictor of congestion, as is the number of cars entering the 
facility. 
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The departing capacity variable was not as important as it might seem it should be at a first 
glance.  This is because the other variables (such as number of cars entering a facility) are highly 
correlated with this variable.  One potential future study of interest would be the relationship 
between the departing capacity variable and the other variables used in this study.  This is not 
necessary to understand the impact of congestion, but to understand how each lot will be affected 
by changes in air travel – a step that is outside the congestion analysis but obviously a part of the 
same planning process. 
 
Another result that is apparent from this study is that the two satellite lots behave similarly.  This 
is only an important point as a footnote to the “BWI Terminal Accessibility Study”.  The 
preliminary data, regression analysis and simple density function analysis, show differences 
between the two lots.  Only in the complex density function analysis, over various periods, does 
it become obvious that the two lots behave the same and that the data just reflect a difference in 
the “average” conditions of the two lots during the study. 
 
The drop-off passenger analysis provides an interesting set of results.  These results are 
particularly interesting given BWI Airport’s recent renovations of this area.  The congestion 
impact of departing capacity shows that this area is strongly susceptible to congestion during 
peak times.  The percentile graph on page 66 show that some passengers are forced to wait much 
longer than the average length of time to gain a spot at curbside.  The analysis contained in this 
study suggests that this facility may be the most susceptible to problems arising from congestion. 
 
Finally, it is worth pointing out what has not been found in this study.  This study does not 
purport to analyze future conditions at the airport.  The congestion variables are analyzed out to 
twenty five percent above the maximum observed in the data.  This does not reflect any 
information about how these variables are likely to change over time.  The study recommended 
above concerning the relationship between departing capacity and the other variables would help 
understand how these conditions might change as airport usage increased in the future. 
 
The actual study of determinants of congestion is not very well established.  This is because prior 
to the past few years computing power was not sufficient to allow the estimation of complex 
density functions.  However, this study points to a methodology that can be used and highlights 
the variables that are of the greatest interest in such an analysis. 
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